## Domino-Heck Reactions of Carba- and Oxabicyclic, Unsaturated Dicarboximides: Synthesis of Aryl-Substituted, Bridged Perhydroisoindole Derivatives

by Cumali Celik<sup>a</sup>), Irem Kulu<sup>a</sup>), Nuket Ocal<sup>\*a</sup>), and Dieter E. Kaufmann<sup>\*b</sup>)

 <sup>a</sup>) Yildiz Technical University, Faculty of Art and Sciences, Department of Chemistry, Davutpasa Campus, 34210 Istanbul, Turkey (phone: +90-212-3834214; e-mail: nocal@yildiz.edu.tr)
<sup>b</sup>) Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstr. 6, D-38678 Clausthal-Zellerfeld

The C-C coupling of the two bicyclic, unsaturated dicarboximides 5 and 6 with aryl and heteroaryl halides gave, under reductive *Heck* conditions, the *C*-aryl-*N*-phenyl-substituted oxabicyclic imides  $7\mathbf{a}-\mathbf{c}$  and  $8\mathbf{a}-\mathbf{c}$  (*Scheme 3*). Domino-*Heck* C-C coupling reactions of 5, 6, and 1b with aryl or heteroaryl iodides and phenyl- or (trimethylsilyl)acetylene also proved feasible giving 8, 9, and  $10\mathbf{a}-\mathbf{c}$ , respectively (*Scheme 4*). Reduction of 1b with LiAlH<sub>4</sub> ( $\rightarrow$ 11) followed by *Heck* arylation and reduction of 5 with NaBH<sub>4</sub> ( $\rightarrow$ 13) followed by *Heck* arylation open a new access to the bridged perhydroisoindole derivatives 12a,b and 14a,b with prospective pharmaceutical activity (*Schemes 5* and 6).

**Introduction.** – Due to its broad synthetic potential as a stereoselective C-C coupling method, the *Heck* reaction has been the subject of several synthetic and mechanistic studies over the last 30 years [1-5]. Originally developed to arylate acyclic alkenes, the reaction scope has been extended to cyclic compounds later, too. Rigid biand multicyclic systems make the catalytic oxidative *Heck*-coupling reaction impossible. To circumvent this problem, domino-*Heck* reactions were introduced with a hydroarylation reaction as its simplest variant [6-8], leading to a reductive C-C coupling reaction. *Kaufmann* and co-workers have been carrying out new examples of reductive *Heck* reactions using bicyclic systems aiming at the synthesis of new biologically active compounds [9-15].

In our previous works, we have accomplished Pd-catalyzed domino-*Heck* applications of bi- and tricyclic precursors of epibatidine analogs [16]. We then focused on reductive *Heck* reactions of polyfunctional tricyclic molecules with a strained C=C bond and an N-(acylamino)imide group [17].

Later, we became interested in the synthesis of bioactive norcantharidin analogues **3** and **4b** that represent aryl-modified bicyclic imide systems, too. We had first synthesized *N*-phenylbicyclo[2.2.1]hept-5-ene-2-*endo*,3-*endo*-dicarboximide (**1a**) and *N*-phenyl-7-oxabicyclo[2.2.1]hept-5-ene-2-*exo*,3-*exo*-dicarboximide (**1b**) as starting compounds according to [18][19]. We then investigated their hydroarylation reactions with aryl- and heteroaryl iodides (ArI) in the presence of Ph<sub>3</sub>As giving **2a**,**b** and subsequent reduction reactions by LiAlH<sub>4</sub> to open a new access to perhydroisoindole derivatives **4a**,**b** [20] (*Scheme 1*). In reductive arylation reactions, Ph<sub>3</sub>As has proved to be superior to Ph<sub>3</sub>P and carbenes as ligands in both selectivity and yield [21].

© 2009 Verlag Helvetica Chimica Acta AG, Zürich



**Results and Discussion.** – We now have prepared N-(4-methoxyphenyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-*exo*,3-*exo*-dicarboximide<sup>1</sup>) (**5**) and the 4-chlorophenyl derivative **6** as the starting compounds in good yields (70 and 72%, resp.) [22][23] (*Scheme 2*).



Treatment of **5** with iodobenzene, 2-iodothiophene, and 2-chloro-5-iodopyridine under reductive *Heck* conditions gave the pure products  $7\mathbf{a} - \mathbf{c}$  after chromatographic separation on silica gel as single diastereoisomers in isolated yields of 48-75%

1) Trivial atom numbering; for systematic names, see Exper. Part.

(*Scheme 3*). The configuration was inferred from their NMR spectra including diagnostic spin-spin interactions. The *exo*-position of the  $C(5)^1$ ) substituent was confirmed by the fact that H-C(5) showed no significant interaction with H-C(1). The geminal H-atoms at C(6) were identified by vicinal coupling to H-C(1). The *Table* shows selected <sup>1</sup>H-NMR data of the hydroarylation products **7a**-c.

Scheme 3



Table. Selected <sup>1</sup>H-NMR Data ( $\delta$  in ppm) of Compounds **7a** – **c**<sup>1</sup>)



7a – c

| 7a       | 7b                                                        | 7c                                                                                                                        |
|----------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 3.13 (d) | 3.11 ( <i>d</i> )                                         | 3.15 (d)                                                                                                                  |
| 3.17(d)  | 3.18(d)                                                   | 3.20(d)                                                                                                                   |
| 5.13(d)  | 5.14(d)                                                   | 5.16(d)                                                                                                                   |
| 4.90 (s) | 4.91 (s)                                                  | 4.85 (s)                                                                                                                  |
|          | <b>7a</b><br>3.13 (d)<br>3.17 (d)<br>5.13 (d)<br>4.90 (s) | 7a     7b       3.13 (d)     3.11 (d)       3.17 (d)     3.18 (d)       5.13 (d)     5.14 (d)       4.90 (s)     4.91 (s) |

The same reductive *Heck*-arylation conditions were successfully applied to the reaction of **6** with 4-chloro-1-iodobenzene, 1-iodonaphthalene, and 1-iodo-4-methoxybenzene to give the new *exo*-arylated heterocycles 8a-c in good yields after chromatographic separation (*Scheme 3*). Again, a characteristic coupling pattern between the bridgehead protons and H-C(5) and H-C(6) appeared in the <sup>1</sup>H-NMR spectra. Additionally, <sup>1</sup>H,<sup>1</sup>H-COSY plots showed cross-peaks between H-C(2) and H-C(3) and between H-C(5) and H-C(6), respectively.

Research in the field of domino reactions is attracting considerable attention in synthetic organic chemistry since it enables the rapid assembly of complex molecules in one-pot processes [24]. Very elegant examples of Pd-catalyzed cascade processes

where a single catalytic cycle entails several sequential bond transformations have recently been reported [25][26]. In this work, we also would like to describe our results in the investigations on the Pd-catalyzed domino-*Heck*-type reactions of **5**, **6**, and **1b** [20].

The use of phenylacetylene or (trimethylsilyl)acetylene under domino-*Heck* conditions [16][17] provided alkynyl-substituted tricyclic imides **8**, **9**, and **10a**-**c** (*Scheme 4*). The structures were assigned by their <sup>1</sup>H,<sup>1</sup>H-COSY and HSQC data.



In addition to the <sup>13</sup>C-NMR and IR spectral data which were in agreement with the proposed structures, the mass spectra of all new compounds showed the expected molecular-ion peaks.

The structurally related perhydroisoindoles are selective sigma receptor antagonists and have a low potential for movement-disorder side effects associated with typical antipsychotic agents [27][28]. Therefore, we have first reduced *N*-phenyl-7-oxabicyclo[2.2.1]hept-5-ene-2-*exo*,3-*exo*-dicarboximide (**1b**) with LiAlH<sub>4</sub> to obtain **11**, followed by the synthesis of some perhydroisoindoles [20]. As part of our continuing interest in new perhydroisoindole derivatives, we now prepared **12a** and **12b** from **11** by the same *Heck*-arylation procedure (*Scheme 5*).

We also tried to reduce compound **5** with an excess of LiAlH<sub>4</sub> in Et<sub>2</sub>O at temperatures ranging from 25 to  $-40^{\circ}$ . After regular workup, the crude product was purified by column chromatography to obtain exclusively 1-(4-methoxyphenyl)-1*H*-pyrrole as the unexpected main product. Therefore, we subsequently reduced **5** with NaBH<sub>4</sub> in EtOH at  $-21^{\circ}$ . Regular workup (HCl; column chromatography) gave compound **13** in 84% yield; its spectroscopic data and crystal structure have recently been reported [29]. Reductive arylation of **13** with 1-iodonaphthalene under *Heck* 





conditions gave the pure regioisomers **14a** and **14b** after column chromatography in yields of 50 and 37%, respectively (*Scheme 6*). The configuration of the new compounds was inferred from their <sup>1</sup>H-NMR and <sup>1</sup>H,<sup>1</sup>H-COSY data. First evidence for the detection of both regioisomers was the observation that H-C(7) at  $\delta$  4.88 appeared as a *d* in the <sup>1</sup>H-NMR spectrum of **14a**, while it appeared as a *s* at  $\delta$  4.89 for **14b**. In the <sup>1</sup>H,<sup>1</sup>H-COSY plot of **14a**, interaction between  $H_{exo}-C(8)$  and H-C(7) was clearly seen, but the spectrum of **14b** did not show the same coupling due to the  $8_{exo}$ -substituent. The HSQC and MS data were also in agreement with the proposed structures.



**Conclusions.** – In the presence of  $Ph_3As$  as a ligand, the Pd-catalyzed hydroarylation of the easily accessible tricyclic *N*-phenyl derivatives of the unsaturated imides **5** and **6** was proven to be a stereoselective, versatile, and high-yield approach to the synthesis of aryl and heteroaryl derivatives of heterotricyclic systems. Domino-

*Heck* C–C coupling reactions with aryl or heteroaryl halides were shown to be feasible in the presence of (trimethylsilyl)acetylene or phenylacetylene. Our results also demonstrated that the reductive access to aryl-substituted bridged perhydroisoindole derivatives will be useful for the construction of novel heterocycles of potential pharmacological interest.

We gratefully acknowledge financial support of this work by the *Yildiz Technical University Scientific Research Projects Coordination Department* (Project No. 26-01-02-04).

## **Experimental Part**

General. All reactions were conducted under N<sub>2</sub> and carried out in a Schlenk system. M.p.: Gallenkamp-melting-point apparatus; uncorrected. Column chromatography (CC): silica gel (SiO<sub>2</sub>) 60. TLC: SiO<sub>2</sub>-precoated (0.2 mm layer) Al sheets (Merck). IR Spectra: Perkin-Elmer FT-IR spectrometer; KBr pellets; in cm<sup>-1</sup>. NMR Spectra: Bruker-Digital-FT-NMR-Avance (400 MHz) and Varian Inova (500 MHz) spectrometers; CDCl<sub>3</sub> solns;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, J in Hz. MS: Varian-Saturn-2100T/GC3900 GC/MS spectrometer; FAB ionization; in m/z. Elemental analyses: Thermo-Flash-EA-1112 elemental analyzer for C, H, N, and S.

Reductive Heck Reactions of **5** and **6**: General Procedure. A soln. of  $[Pd(OAc)_2]$  (5.6 mg, 0.025 mmol) and Ph<sub>3</sub>As (33.7 mg, 0.11 mmol) in anh. DMF or DMSO (3 ml) was stirred under N<sub>2</sub> at 65° for 15 min. Then, **5** (271 mg, 1 mmol) or **6** (275.5 mg, 1 mmol), Et<sub>3</sub>N (488 µl, 3.5 mmol), the appropriate aryl or heteroaryl iodide (1.5 mmol), and HCOOH (138 mg, 3 mmol) were added. The mixture was stirred for 8–24 h. After cooling to r.t., AcOEt and brine were added. The org. layer was dried (MgSO<sub>4</sub>), the solvent evaporated, and the residue purified by CC.

 $\label{eq:solution} \begin{array}{l} \text{N-}(4-Methoxyphenyl)\-5-exo\-phenyl\-7-oxabicyclo\-[2.2.1]\/heptane\-2-exo\-3-exo\-dicarboximide} (= rel-(3aR,4S,5R,7R,7aS)\-Hexahydro\-2-(4-methoxyphenyl)\-5-phenyl\-4,7-epoxy\-IH\-isoindole\-I,3(2H)\-dione;\\ \textbf{7a}). CC (AcOEt/hexane 3:2): \textbf{7a} (63\%). Colorless crystals. M.p. 241°. IR: 3085, 3012, 2922, 1709, 1605, 1512, 1437, 1396, 1254, 1198, 1024, 880, 772, 737. ^1H\-NMR (400 MHz): 1.99\-2.04 (m, H_{exo}\-C(6)); 2.28 (dd, J = 8.97, 3.91, H_{endo}\-C(6)); 3.07 (dd, J = 4.88, 3.91, H_{endo}\-C(5)); 3.13 (d, J = 7.02, H\-C(2)); 3.17 (d, J = 7.02, H\-C(2)); 3.81 (s, MeO); 4.90 (s, H\-C(4)); 5.13 (d, J = 4.86, H\-C(1)); 6.96 (d, J = 9.28, 2 arom. H); 7.17 (d, J = 8.79, 2 arom. H); 7.23\-7.32 (m, 5 arom. H). ^{13}C\-NMR (100 MHz): 40.3; 47.7; 50.0; 50.4; 55.7; 79.8; 85.5; 114.8; 124.6; 127.1; 127.3; 127.9; 128.9; 144.2; 159.9; 176.3; 176.6. MS: 349 (M^+\cdot), 320, 203, 188, 134, 106, 91, 78. Anal. calc. for C_{21}H_{19}NO_4 (349.38): C 72.19, H 5.48, N 4.01; found: C 72.23, H 5.47, N 3.99. \end{array}$ 

$$\begin{split} & \text{N-}(4-Methoxyphenyl)-5-\text{exo-}(2-thienyl)-7-oxabicyclo[2.2.1]heptane-2-\text{exo},3-\text{exo-}dicarboximide} \\ & (=\text{rel-}(3a\text{R},4\text{R},5\text{S},7\text{R},7a\text{S})-Hexahydro-2-(4-methoxyphenyl)-5-(2-thienyl)-4,7-epoxy-1\text{H-}isoindole-}\\ & I,3(2\text{H})-dione; \textbf{7b}). \ \text{CC} (AcOEt/hexane 1:1): \textbf{7b} (48\%). \ \text{Colorless crystals. M.p. 181°. IR: 3073, 3011,}\\ & 2925, 1706, 1606, 1589, 1482, 1437, 1394, 1254, 1195, 1025, 827, 709, 693. ^1\text{H-NMR: } 2.04-2.12 (m, \\ & \text{H}_{exo}-\text{C}(6)); 2.29 (dd, J=8.97, 3.91, \\ & \text{H}_{endo}-\text{C}(6)); 3.11 (d, J=7.02, \\ & \text{H-C}(2)); 3.18 (d, J=7.02, \\ & \text{H-C}(3)); \\ & 3.44 (dd, J=4.88, 3.91, \\ & \text{H}_{endo}-\text{C}(5)); 3.82 (s, \\ & \text{MeO}); 4.91 (s, \\ & \text{H-C}(4)); \\ & 5.14 (d, J=4.86, \\ & \text{H-C}(1)); \\ & 6.84 - \\ & 6.88 (m, 1 \text{ arom. H}); \\ & 6.92-6.99 (m, 3 \text{ arom. H}); \\ & 7.15-7.18 (m, 3 \text{ arom. H}). \\ & ^{13}\text{C-NMR: 40.78; } 43.21; \\ & 49.66; \\ & 49.76; \\ & 55.71; \\ & 79.7; \\ & 85.6; \\ & 114.8; \\ & 124.2; \\ & 124.4; \\ & 124.6; \\ & 127.0; \\ & 127.9; \\ & 147.3; \\ & 159.9; \\ & 176.4; \\ & 176.2. \\ & \text{MS: } 355 (M^+\cdot), \\ & 327, 203, \\ & 188, 162, 149, \\ & 134, 106, 92. \\ & \text{Anal. calc. for } C_{19}\text{H}_{17}\text{NO}_4\text{S} (355.41): \\ & \text{C} 64.21, \\ & \text{H} 4.82, \\ & \text{N} 3.94, \\ & \text{S} 9.02; \\ & \text{found: C} 64.22, \\ & \text{H} 4.81, \\ & \text{N} 3.90, \\ & \text{S} 8.99. \\ \end{split}$$

5-exo-(6-Chloropyridin-3-yl)-N-(4-methoxyphenyl)-7-oxabicyclo[2.2.1]heptane-2-exo,3-exo-dicarboximide (=rel-(3aR,4S,5R,7R,7aS)-5-(6-Chloropyridin-3-yl)hexahydro-2-(4-methoxyphenyl)-4,7-epoxy-1H-isoindole-1,3(2H)-dione; **7c**). CC (AcOEt/hexane 3:2): **7c** (75%). Colorless crystals. M.p. 192°. IR: 3010, 2973, 2840, 1708, 1608, 1584, 1564, 1457, 1444, 1392, 1252, 1192, 1106, 827. <sup>1</sup>H-NMR (400 MHz): 1.88–1.94 (m, H<sub>exo</sub>-C(6)); 2.33 (dd, J = 8.97, 3.91, H<sub>endo</sub>-C(6)); 3.10 (dd, J = 4.88, 3.91, H<sub>endo</sub>-C(5)); 3.15 (d, J = 7.02, H-C(2)); 3.20 (d, J = 7.02, H-C(3)); 3.81 (s, MeO); 4.85 (s, H-C(4)); 5.16 (d, J = 4.86, H-C(1)); 6.97 (d, J = 9.20, 2 arom. H); 7.16 (d, J = 8.80, 2 arom. H); 7.28 (d, J = 8.79, 1 arom. H); 7.62 (dd, J = 2.40, 6.00, 1 arom. H); 8.27 (d, J = 2.40, 1 arom. H). <sup>13</sup>C-NMR (100 MHz): 40.1;

44.1; 49.5; 49.8; 55.5; 79.4; 84.7; 114.5; 124.1; 124.5; 127.6; 137.3; 138.5; 148.5; 150.2; 159.7; 175.7; 176.0. MS: 382 ( $M^{++}$ ), 354, 179, 150, 135, 106, 91. Anal. calc. for C<sub>20</sub>H<sub>17</sub>ClN<sub>2</sub>O<sub>4</sub> (384.81): C 62.42, H 4.45, N 7.28; found: C 62.56, H 4.46, N 7.29.

N,5-exo-*Bis*(4-chlorophenyl)-7-oxabicyclo[2.2.1]heptane-2-exo,3-exo-dicarboximide (= rel-(3aR,4S,5R,7R,7aS)-2,5-*Bis*(4-chlorophenyl)hexahydro-4,7-epoxy-*I*H-isoindole-*I*,3(2H)-dione; **8a**). CC (AcOEt/hexane 3 : 2): **8a** (46%). Colorless crystals. M.p. 219°. IR : 3091, 3001, 2959, 1702, 1494, 1409, 1377, 1180, 1095, 824, 810. <sup>1</sup>H-NMR (400 MHz): 1.92–1.98 (*m*, H<sub>exo</sub>–C(6)); 2.29 (*dd*, *J*=8.97, 3.91, H<sub>endo</sub>–C(6)); 3.05 (*dd*, *J*=4.88, 3.91, H<sub>endo</sub>–C(5)); 3.17 (*dd*, *J*=7.02, 12.48, H–C(2), H–C(3)); 4.86 (*s*, H–C(4)); 5.13 (*d*, *J*=4.86, H–C(1)); 7.18–7.29 (*m*, 6 arom. H); 7.43 (*d*, *J*=8.58, 2 arom. H). <sup>13</sup>C-NMR (125 MHz): 39.1; 45.8; 48.7; 49.1; 78.6; 84.1; 126.7; 127.5; 127.8; 128.4; 129.2; 131.8; 141.4; 174.4, 174.7. MS: 387 (*M*<sup>++</sup>), 359, 207, 178, 153, 90. Anal. calc. for C<sub>20</sub>H<sub>15</sub>Cl<sub>2</sub>NO<sub>3</sub> (388.24): C 61.87, H 3.89, N 3.61; found: C 61.87, H 3.90, N 3.63.

$$\begin{split} & \text{N-}(4-Chlorophenyl)-5-\text{exo-}(naphthalen-1-yl)-7-oxabicyclo[2.2.1]heptane-2-\text{exo},3-\text{exo-}dicarboximide} \\ & (=\text{rel-}(3a\text{R},4\text{S},5\text{R},7\text{R},7a\text{S})-2-(4-Chlorophenyl)hexahydro-5-(naphthalen-1-yl)-4,7-epoxy-1\text{H-isoindole-} \\ & I,3(2\text{H})-dione; \textbf{8b}). \text{ CC} (AcOEt/hexane 3:2): \textbf{8b} (56\%). \text{ Colorless crystals. M.p. 228°. IR: 3083, 3031, 2990, 2945, 1703, 1598, 1492, 1382, 1202, 1182, 1093, 828 802, 778. ^{1}\text{H-NMR} (400 \text{ MHz}): 2.01-2.07 (m, \\ & \text{H}_{exo}-\text{C}(6)); 2.46 (dd, J=8.97, 3.91, \\ & \text{H}_{endo}-\text{C}(6)); 3.27 (d, J=7.02, \\ & \text{H-C}(2)); 3.35 (d, J=7.02, \\ & \text{H-C}(3)); \\ & 3.88 (dd, J=4.88, 3.91, \\ & \text{H}_{endo}-\text{C}(5)); 5.17 (d, J=4.86, \\ & \text{H-C}(1)); 5.22 (s, \\ & \text{H-C}(4)); 7.22-7.27 (m, 1 \text{ arom.} \\ & \text{H}); \\ & 7.44-7.58 (m, 7 \text{ arom. H}); \\ & 7.75 (d, J=8.70, 1 \text{ arom. H}); \\ & 7.89 (d, J=9.36, 1 \text{ arom. H}); \\ & 8.01 (d, J=8.19, 1 \text{ arom. H}). \\ & ^{13}\text{C-NMR} (100 \text{ MHz}): \\ & 39.9; \\ & 42.4; \\ & 49.3; \\ & 50.5; \\ & 80.1; \\ & 84.3; \\ & 122.9; \\ & 123.1; \\ & 125.9; \\ & 126.0; \\ & 126.5; \\ & 127.6; \\ & 129.4; \\ & 129.6; \\ & 130.5; \\ & 131.3; \\ & 134.3; \\ & 134.9; \\ & 139.4; \\ & 175.8; \\ & 176.1. \\ & \text{MS: } 403 (M^{++}), \\ & 375, \\ & 207, \\ & 193, \\ & 179, \\ & 153, \\ & 90. \\ & \text{Anal. calc. for } \\ & \text{C}_{24}\text{H}_{18}\text{CINO}_{3} (403.86): \\ & \text{C} \\ & 71.38, \\ & \text{H} \\ & 4.49, \\ & \text{N} \\ & 3.47; \\ & \text{found: C} \\ & \text{C} \\ & 12.7, \\ & \text{H} \\ & 4.38, \\ & \text{N} \\ & 3.45. \\ & \text{C} \\ &$$

$$\begin{split} & \text{N-}(4-Chlorophenyl)-5-\text{exo-}(4-methoxyphenyl)-7-oxabicyclo[2.2.1]heptane-2-\text{exo},3-\text{exo-}dicarboximide} \\ & (=\text{rel-}(3a\text{R},4\text{S},5\text{R},7\text{R},7a\text{S})-2-(4-Chlorophenyl)hexahydro-5-(4-methoxyphenyl)-4,7-epoxy-1\text{H-}isoindole-I,3(2\text{H})-dione;$$
**8c**). CC (AcOEt/hexane 3:2):**8c** $(59%). Colorless crystals. M.p. 169°. IR: 3097, 3072, 2989, 2836, 1704, 1611, 1582, 1513, 1495, 1406, 1380, 1254, 1176, 1092, 832, 812. <sup>1</sup>\text{H-NMR} (400 \text{ MHz}): 1.95-2.01 (m, H_{exo}-C(6)); 2.27 (dd, J=8.97, 3.91, H_{endo}-C(6)); 3.04 (dd, J=4.88, 3.91, H_{endo}-C(5)); 3.14 (d, J=7.02, H-C(2)); 3.19 (d, J=7.02, H-C(3)); 3.79 (s, MeO); 4.86 (s, H-C(4)); 5.12 (d, J=4.86, H-C(1)); 6.84 (d, J=8.58, 2 \text{ arom. H}); 7.18 (d, J=8.58, 2 \text{ arom. H}); 7.23 (d, J=8.58, 2 \text{ arom. H}); 7.43 (d, J=8.58, 2 \text{ arom. H}). <sup>13</sup>C-NMR (100 MHz): 40.4; 46.9; 50.0; 50.4; 55.5; 79.8; 85.7; 114.3; 127.9; 128.3; 129.6; 130.5; 134.8; 136.4; 158.8; 175.8; 176.1. MS: 383 (M^+), 290, 207, 147, 153, 91, 77. Anal. calc. for C<sub>21</sub>H<sub>18</sub>CINO<sub>4</sub> (383.82): C 65.71, H 4.73, N 3.65; found: C 65.70, H 4.73, N 3.62.$ 

Domino-Heck Reactions of **5**, **6**, and **1b**: General Procedure. A soln. of  $[Pd(OAc)_2]$  (5.6 mg, 25 µmol) and Ph<sub>3</sub>As (55 µmol) in anh. DMF (3 ml) was stirred at 40° for 15 min. Then, **5** (or **6** or **1b**) (1 mmol), the aryl compound (1.5 mmol), Et<sub>3</sub>N (488 µl, 3.50 mmol), and (trimethylsilyl)acetylene or phenylacetylene (3 mmol) were rapidly added in one portion. The mixture was kept at 40° for 24 h. After cooling to r.t., brine (50 ml) was added, the mixture extracted with AcOEt and dried (MgSO<sub>4</sub>), the solvent evaporated, and the residue purified by CC.

 $\begin{array}{l} 5-(4-Chlorophenyl)-N-(4-methoxyphenyl)-6-exo-(phenylethynyl)-7-oxabicyclo[2.2.1]heptane-2-exo,3-exo-dicarboximide (=rel-(3aR,48,5R,68,7R,7aS)-5-(4-Chlorophenyl)hexahydro-2-(4-methoxyphenyl-6-(2-phenylethynyl)-4,7-epoxy-1H-isoindole-1,3(2H)-dione; 8). CC (AcOEt/hexane 3:1): 8 (47%). Colorless crystals. M.p. 243°. IR: 3046, 3011, 2993, 2838, 1778, 1708, 1608, 1512, 1491, 1442, 1396, 1251, 1191, 1035, 756, 692, 677. <sup>1</sup>H-NMR (400 MHz): 3.26 (d, <math>J$  = 7.02, H-C(2)); 3.29 (d, J = 7.02, H-C(3)); 3.43 (d, J = 8.80, H<sub>endo</sub>-C(6)); 3.54 (d, J = 8.80, H<sub>endo</sub>-C(5)); 3.86 (s, MeO); 5.13 (s, H-C(4)); 5.20 (s, H-C(1)); 6.96-7.03 (m, 4 arom. H); 7.21-7.27 (m, 5 arom. H); 7.35 (s, 4 arom. H). <sup>13</sup>C-NMR (100 MHz): 42.8; 49.3; 49.6; 52.1; 55.6; 84.5; 85.0; 86.9; 87.0; 114.6; 122.6; 124.2; 127.7; 128.1; 128.2; 128.2; 130.2; 131.3; 133.0; 135.9; 138.2; 159.8; 175.5; 175.6. MS: 483 (M<sup>++</sup>), 279, 203, 188, 150, 135, 106, 90. Anal. calc. for C<sub>29</sub>H<sub>22</sub>ClNO<sub>4</sub> (483.94): C 71.97, H 4.58, N 2.89; found: C 61.87, H 3.90, N 3.63.

N-(4-Chlorophenyl)-5-exo-phenyl-6-exo-[2-(trimethylsilyl)ethynyl]-7-oxabicyclo[2.2.1]heptane-2-exo,3-exo-dicarboximide (=rel-(3aR,48,5R,68,7R,7aS)-2-(4-Chlorophenyl)hexahydro-5-phenyl-6-[2-(trimethylsilyl)ethynyl]-4,7-epoxy-1H-isoindole-1,3(2H)-dione; **9**). CC (AcOEt/hexane 3:1): **9** (46%). Colorless crystals. M.p. 155°. IR: 3066, 3029, 2960, 2898, 2165, 1773, 1708, 1603, 1493, 1456, 1392, 1249, 1192, 1092, 757, 729, 699. <sup>1</sup>H-NMR (400 MHz): 0.08 (s, 3 Me); 3.24 (s, H–C(2), H–C(3)); 3.33 (d, J =

8.91,  $H_{endo} - C(6)$ ); 3.37 (*d*, *J* = 8.91,  $H_{endo} - C(5)$ ); 5.14 (*d*, *J* = 2.80, H - C(1), H - C(4)); 7.26 - 7.33 (*m*, 7 arom. H); 7.41 (*d*, *J* = 8.80, 2 arom. H). <sup>13</sup>C-NMR (100 MHz): -0.5; 43.0; 49.4; 49.7; 52.4; 84.6; 85.2; 91.4; 103.1; 127.1; 127.7; 128.0; 128.9; 129.5; 130.1; 134.8; 139.3; 175.1; 175.2. MS: 399, 242, 179, 153, 91, 74.

5-exo-(4-Chlorophenyl)-N-phenyl-exo-[2-(6-trimethylsilyl)ethynyl]-7-oxabicyclo[2.2.1]heptane-2-exo,3-exo-dicarboximide (=rel-(3aR,48,5R,68,7R,7aS)-5-(4-Chlorophenyl)hexahydro-2-phenyl-6-[2-(trimethylsilyl)ethynyl]-4,7-epoxy-1H-isoindole-1,3(2H)-dione; **10a**). CC (AcOEt/hexane 1:3): **10a** (56%). Colorless crystals. M.p. 226°. IR: 3034, 3015, 2961, 2900, 2161, 1781, 1705, 1598, 1495, 1457, 1393, 1248, 1188, 843, 738, 705. <sup>1</sup>H-NMR (500 MHz): 0.00 (s, 3 Me); 3.28 (s, H–C(2), H–C(3)); 3.37 (d, J = 8.91, H<sub>endo</sub>–C(6)); 3.39 (d, J = 8.91, H<sub>endo</sub>–C(5)); 5.15 (s, H–C(4)); 5.18 (s, H–C(1)); 7.31–7.36 (m, 5 arom. H); 7.49 (d, J = 8.80, 2 arom. H) 7.55 (d, J = 8.80, 2 arom. H). <sup>13</sup>C-NMR (125 MHz): 1.4; 45.0; 51.3; 51.6; 53.8; 86.5; 86.9; 93.8; 104.7; 129.9; 130.9; 131.1; 131.2; 132.2; 133.8; 134.9; 139.9; 177.0; 177.2. MS: 449 ( $M^{++}$ ), 413, 242, 179, 153, 91, 74.

5-exo-(4-Methoxyphenyl)-N-phenyl-6-exo-[2-(trimethylsilyl)ethynyl]-7-oxabicyclo[2.2.1]heptane-2-exo,3-exo-dicarboximide (= rel-(3aR,4S,5R,6S,7R,7aS)-Hexahydro-5-(4-methoxyphenyl)-2-phenyl-6-[2-(trimethylsilyl)ethynyl]-4,7-epoxy-1H-isoindole-1,3(2H)-dione; **10b**). CC (AcOEt/hexane 1:1): **10b** (43%). Colorless crystals. M.p. 176°. IR: 3000, 2996, 2958, 2835, 2185, 1778, 1712, 1613, 1513, 1497, 1458, 1387, 1248, 1196, 1179, 845, 710, 695. <sup>1</sup>H-NMR (500 MHz): 0.00 (*s*, 3 Me); 3.26 (*s*, H–C(2), H–C(3)); 3.35 (*d*, J = 8.80, H<sub>endo</sub>–C(6)); 3.39 (*d*, J = 8.80, H<sub>endo</sub>–C(5)); 3.88 (*s*, MeO); 5.14 (*s*, H–C(4)); 5.17 (*s*, H–C(1)); 6.90–6.93 (*m*, 2 arom. H); 7.30–7.36 (*m*, 3 arom. H); 7.47–7.57 (*m*, 4 arom. H). <sup>13</sup>C-NMR (125 MHz): 0.0; 43.6; 49.8; 50.2; 52.2; 55.7; 85.0; 85.8; 91.7; 103.9; 113.8; 126.9; 129.3; 129.7; 130.4; 132.1; 132.2; 159.2; 175.8; 175.9. MS: 445 ( $M^{++}$ ), 430, 414, 242, 179, 153, 91, 74.

5-exo-(4-Chlorophenyl)-N-phenyl-6-exo-(2-phenylethynyl)-7-oxabicyclo[2.2.1]heptane-2-exo,3-exodicarboximide (= rel-(3aR,4S,5R,6S,7R,7aS)-5-(4-Chlorophenyl)hexahydro-2-phenyl-6-(2-phenylethynyl)-4,7-epoxy-IH-isoindole-1,3(2H)-dione; **10c**). CC (AcOEt/hexane 1:3): **10c** (48%). Colorless crystals. M.p. 254°. IR: 3048, 3018, 2981, 2915, 2835, 2185, 1777, 1703, 1597, 1491, 1456, 1389, 1185, 791, 755, 743. <sup>1</sup>H-NMR (500 MHz): 3.25 (d, J = 7.32, H-C(2)); 3.27 (d, J = 7.32, H-C(3)); 3.41 (d, J = 8.80, H<sub>endo</sub>-C(6)); 3.50 (d, J = 8.80, H<sub>endo</sub>-C(5)); 5.11 (s, H-C(4)); 5.17 (s, H-C(1)); 6.92–6.95 (m, 2 arom. H); 7.17–7.28 (m, 8 arom. H); 7.39–7.49 (m, 4 arom. H). <sup>13</sup>C-NMR (125 MHz): 43.1; 49.6; 49.9; 52.3; 84.8; 85.2; 87.0; 87.3; 122.9; 126.7; 128.3; 128.3; 128.4; 129.2; 129.5; 130.4; 131.5; 131.8; 133.3; 138.4; 175.4; 175.5. MS: 453 ( $M^+$ ), 438, 422, 279, 188, 135, 106, 51. Anal. calc. for C<sub>28</sub>H<sub>20</sub>ClNO<sub>3</sub> (453.92): C 74.09, H 4.44, N 3.09; found: C 73.97, H 4.49, N 3.01.

8-'exo'-(4-Methoxyphenyl)-4-phenyl-10-oxa-4-azatricyclo[ $5.2.1.0^{2.6}$ ]decane (= rel-(3aR,4R,5S,7S, 7aS)-Octahydro-5-(4-methoxyphenyl)-2-phenyl-4,7-epoxy-1H-isoindole; **12a**). CC (AcOEt/hexane 1:3): **12a** (48%). Colorless crystals. M.p. 167°. IR: 3052, 2999, 2978, 2967, 2886, 2829, 1596, 1507, 1470, 1370, 1246, 1175, 1031, 829, 752, 693. <sup>1</sup>H-NMR (500 MHz): 1.75 (*ddd*, J = 12.20, 10.25, 4.88, H–C(9)); 2.08 (*dd*, J = 8.78, 12.20, H–C(9)); 2.67 – 2.74 (m, H–C(2), H–C(6)); 2.85 – 2.98 (m, 1 CH<sub>2</sub>N, H–C(8)); 3.66 – 3.72 (m, 1 CH<sub>2</sub>N); 3.77 (s, MeO); 4.26 (s, H–C(7)); 4.52 (d, J = 5.36, H–C(1)); 6.62 (d, J = 8.79, 2 arom. H); 6.70 (d, J = 7.32, 1 arom. H); 6.81 (d, J = 8.79, 2 arom. H); 7.18 – 7.23 (m, 4 arom. H). <sup>13</sup>C-NMR (125 MHz): 40.4; 46.9; 47.9; 48.4; 53.6; 53.8; 55.3; 80.8; 87.2; 113.6; 113.9; 116.9; 128.2; 129.0; 138.3; 148.4; 158.1. MS: 321 ( $M^{++}$ ), 306, 244, 214, 138, 106, 77. Anal. calc. for C<sub>21</sub>H<sub>23</sub>NO<sub>2</sub> (321.41): C 78.47, H 7.21, N 4.36; found: C 78.54, H 7.16, N 4.38.

8-'exo'-(*Naphthalen-1-yl*)-4-phenyl-10-oxa-4-azatricyclo[ $5.2.1.0^{2.6}$ ]decane (= rel-(3aR,4R,5S,7S, 7aS)-Octahydro-5-(*naphthalen-1-yl*)-2-phenyl-4,7-epoxy-1H-isoindole; **12b**). CC (AcOEt/hexane 1:8): **12b** (54%). Colorless crystals. M.p. 211°. IR: 3041, 2982, 2952, 2899, 2815, 1596, 1504, 1475, 1365, 1332, 1214, 1174, 786, 755, 693. <sup>1</sup>H-NMR (500 MHz): 1.85 (*ddd*, J = 12.20, 10.25, 4.88, H–C(9)); 2.27 (*dd*, J = 8.78, 12.20, H–C(9)); 2.81–2.92 (m, H–C(2), H–C(6)); 2.99–3.03 (m, CH<sub>2</sub>N); 3.70–3.78 (m, CH<sub>2</sub>N, H–C(8)); 4.58 (d, J = 5.36, H–C(1)); 4.61 (s, H–C(7)); 6.65 (d, J = 7.80, 2 arom. H); 6.73 (d, J = 7.32, 1 arom. H); 7.23 (d, J = 7.30, 2 arom. H); 7.42 – 7.54 (m, 3 arom. H); 7.58 (d, J = 6.84, 1 arom. H); 7.71 (d, J = 8.30, 1 arom. H); 7.85 (d, J = 7.80, 1 arom. H); 8.07 (d, J = 8.30, 1 arom. H). <sup>13</sup>C-NMR (125 MHz): 39.5; 42.0; 48.2; 48.6; 53.7; 53.8; 55.3; 81.1; 85.7; 113.6; 116.9; 123.0; 123.1; 125.4; 125.9; 126.6; 129.0; 129.1; 131.4; 133.9; 141.1. 148.4. MS: 341 ( $M^{++}$ ), 214, 152, 97, 77. Anal. calc. for C<sub>24</sub>H<sub>23</sub>NO (341.45): C 84.42, H 6.79, N 4.10; found: C 84.52, H 6.78, N 4.11.

5-*Hydroxy-4-(4-methoxyphenyl)-9-*'exo'-(*naphthalen-1-yl)-10-oxa-4-azatricyclo*[ $5.2.1.0^{2.6}$ ]*decan-3-one* (= rel-(3aR, 4S, 6S, 7R, 7aS)-*Octahydro-3-hydroxy-2-(4-methoxyphenyl)-6-(naphthalen-1-yl)-4*, 7-*epoxy-1*H-*indol-1-one*; **14a**). CC (AcOEt/hexane 3:2): **14a** (38%). Colorless crystals. M.p. 199°. IR: 3391, 3011, 2995, 2956, 2833, 1674, 1655, 1611, 1516, 1445, 1416, 1337, 1255, 1181, 1079, 828, 802, 778. <sup>1</sup>H-NMR (400 MHz, ( $D_6$ )DMSO): 1.62-1.68 (m,  $H_{exo'}-C(8)$ ); 2.38 (dd,  $J=9.19, 2.73, H_{endo'}-C(8)$ ); 3.34 (d, H-C(2), H-C(6) with DMSO); 3.75 (s, MeO); 3.94 (dd,  $J=4.88, 3.91, H_{endo'}-C(9)$ ); 4.69 (s, H-C(1)); 4.88 (d, J=4.86, H-C(7)); 5.33 (d, J=8.41, H-C(5)); 6.45 (d, J=8.60, OH); 6.94 (d, J=8.90, 2 arom. H); 7.42 (d, J=8.90, 2 arom. H); 7.45-7.59 (m, 4 arom. H); 7.76 (d, J=8.80, 1 arom. H); 7.92 (d, J=9.19, 1 arom. H); 8.20 (d, J=8.21, 1 arom. H). <sup>13</sup>C-NMR (100 MHz, ( $D_6$ )DMSO): 3.95; 41.0; 49.5; 51.8; 55.2; 80.5; 83.2; 87.6; 113.7; 123.0; 123.5; 125.0; 125.6; 126.0; 126.4; 128.6; 130.5; 131.0; 133.4; 140.9; 156.9; 172.2. MS: 400 ( $M^{++}$ ), 205, 190, 189, 154, 67. Anal. calc. for  $C_{25}H_{23}NO_4$  (401.45): C 74.79, H 5.77, N 3.49; found: C 74.78, H 5.78, N 3.53.

5-*Hydroxy-4-(4-methoxyphenyl)-8-*'exo'-(*naphthalen-1-yl)-10-oxa-4-azatricyclo*[ $5.2.1.0^{2.6}$ ]*decan-3-one* (= rel-(3aR,4S,5R,7R,7aS)-*Octahydro-3-hydroxy-2-(4-methoxyphenyl)-5-(naphthalen-1-yl)-4,7-epoxy-1*H-*indol-1-one*; **14b**). CC (AcOEt/hexane 3:2): **14b** (50%). Colorless crystals. M.p. 207°. IR: 3245, 3011, 2991, 2973, 2937, 2845, 1655, 1595, 1510, 1458, 1446, 1394, 1252, 1179, 1074, 806, 765, 737. <sup>1</sup>H-NMR (400 MHz, ( $D_6$ )DMSO): 1.67-1.72 ( $m, H_{exo'}-C(9)$ ); 2.43 ( $dd, J=9.19, 2.73, H_{endo'}-C(9)$ ); 2.67 (d, J=7.82, H-C(6)); 3.14 (d, J=7.62, H-C(2)); 3.75 (s, MeO); 3.87 ( $dd, J=9.19, 2.73, H_{endo'}-C(9)$ ); 4.76 (d, J=4.86, H-C(1)); 4.89 (s, H-C(7)); 5.35 (d, J=8.41, H-C(5)); 6.44 (d, J=8.60, OH); 6.95 (d, J=8.80, 2 arom. H); 7.42 (d, J=8.80, 2 arom. H); 7.45-7.60 (m, 4 arom. H); 7.78 (d, J=7.62, 1 arom. H); 7.93 (d, J=7.62, 1 arom. H); 8.20 (d, J=8.21, 1 arom. H). <sup>13</sup>C-NMR (100 MHz, ( $D_6$ )DMSO): 39.4; 41.6; 50.1; 52.4; 55.7; 79.2; 85.3; 88.0; 114.2; 124.1; 125.5; 126.5; 126.8; 129.1; 131.0; 131.5; 133.9; 141.4; 157.3; 172.8. MS: 400 ( $M^{++}$ ), 206, 190, 189, 154, 67. Anal. calc. for  $C_{25}H_{23}NO_4$  (401.45): C 74.79, H 5.77, N 3.49; found: C 74.78, H 5.77, N 3.51.

## REFERENCES

- [1] R. F. Heck, 'Palladium Reagents in Organic Synthesis', Academic Press Inc., 1985.
- [2] A. de Meijere, F. E. Meyer, Angew. Chem. 1994, 106, 2473; Angew. Chem., Int. Engl. Ed. 1994, 33, 2379.
- [3] J. Tsuji, 'Palladium Reagents and Catalyst', John Wiley, New York, 1996.
- [4] A. V. Cheprakov, I. P. Beletskava, Chem. Rev. 2000, 100, 3009.
- [5] E. Negishi, A. de Meijere, 'Handbook of Organopalladium Chemistry for Organic Synthesis', Wiley-Interscience, New York, 2002.
- [6] A. Arcadi, F. Marinelli, S. Cacchi, E. Bernocchi, G. Ortar, J. Organomet. Chem. 1989, 368, 249.
- [7] R. C. Larock, P. L. Johnson, J. Chem. Soc., Chem. Commun. 1989, 1368.
- [8] J. C. Namyslo, D. E. Kaufmann, Chem. Ber. Recl. 1997, 130, 1327.
- [9] J. C. Namyslo, D. E. Kaufmann, Synlett 1999, 804.
- [10] F. Stuhlmann, D. E. Kaufmann, J. Prakt. Chem. 1999, 341, 455.
- [11] J. Storsberg, M. V. Nandakumar, S. Sankaranarayanan, D. E. Kaufmann, Adv. Synth. Catal. 2001, 343, 177.
- [12] M.-L. Yao, G. Adiwidjaja, D. E. Kaufmann, Angew. Chem. 2002, 114, 3523; Angew. Chem., Int. Ed. 2002, 41, 3375.
- [13] D. E. Kaufmann, J. C. Namyslo, J. Storsberg, J. Klinge, M.-L. Yao, 'Proceedings of the Silver Jubilee Conference of the Bangladesh Chemical Society', 2003, p. 25.
- [14] Z.-L. Wei, C. George, A. P. Kozikowski, Tetrahedron Lett. 2003, 44, 3847.
- [15] J. Storsberg, M.-L. Yao, N. Öcal, A. de Meijere, A. E. W. Adam, D. E. Kaufmann, *Chem. Commun.* 2005, 45, 5665.
- [16] C. Yolacan, E. Bagdatli, N. Öcal, D. E. Kaufmann, Molecules 2006, 11, 603.
- [17] E. Bagdatli, N. Öcal, D. E. Kaufmann, Helv. Chim. Acta 2007, 90, 2380.
- [18] J. B. William, B. L. William, J. Am. Chem. Soc. 1957, 79, 1444.
- [19] W. K. Anderson, A. S. Milowsky, J. Org. Chem. 1985, 50, 5423.

- [20] G. Göksu, M. Gul, N. Öcal, D. E Kaufmann, Tetrahedron Lett. 2008, 49, 2885.
- [21] J. C. Namyslo, D. E. Kaufmann, Synlett 1999, 804.
- [22] L.-P. Deng, F.-M. Liu, H.-Y. Wang, J. Heterocycl. Chem. 2005, 42, 13.
- [23] L. S. Oswal, S. N. Sarkar, K. V. Bhandari, B. H. Oza, B. C. Patel, Iran. Polym. J. 2004, 13, 297.
- [24] L. F. Tietze, G. Brasche, K. M. Gericke, 'Domino Reactions in Synthesis', Wiley-VCH, Weinheim, 2006.
- [25] A. de Meijere, S. Bräse, J. Organomet. Chem. 1999, 576, 88.
- [26] O. Arjana, A. G. Csaky, V. Leon, R. Medel, J. Plumet, Tetrahedron Lett. 2004, 45, 565.
- [27] B. R. de Costa, X. S. He, J. T. Linders, C. Dominguez, Z. Q. Gu, W. Williams, W. D. Bowen, J. Med. Chem. 1993, 36, 2311.
- [28] E. Ciganek, to Du Pont Merck Pharmaceutical Company, U.S. Patent 5216018, 1993 (Chem. Abstr. 1993, 119, 225816).
- [29] G. A. Gokce, C. Celik, M. Aygun, N. Öcal, O. Buyukgungor, Acta Crystallogr. 2008, C64, 098-0100.

Received October 25, 2008